University of Tanta
Faculty of Science
Department of Physics

Date : 28/12/2016

(シャノレニャノレニュ

Quantum Mechanics 1

Course code: PH3131

Time allowed: 2 Horurs

Answer the following questions:

(1) a - Consider the operator A,

$$\hat{A}\varphi(x) = \varphi^*_{(x)}$$

I – is A Hermit ian ?

(5 marks)

li – What are the eigenfunctions of A?

(5 marks)

lii - What are the eigenvalues of A?

(5 marks)

b - Prove that for the free- particle Hamiltonian \hat{H} is Hermitian .

(10 marks)

(2) a – Calculate the expectation value of the potential energy for a harmonic oscillator.

(15 marks)

b – Derive the grounded state wave function of the harmonic oscillator (10

(4) Consider a one-dimensional box centered at the origin, its walls at

 $X = \frac{1}{2}L$, $X = -\frac{1}{2}L$. At t = O the particle in the state :

$$\Psi(x,0) = \sqrt{\frac{2}{21L}} \left[\cos \frac{\pi x}{L} + 2 \sin \frac{2\pi x}{L} + 4 \cos \frac{3\pi x}{L} \right]$$

a - What is ψ (x,t) 🤊

(6 marks)

b - What is the probability $P(E_n)$?

(6 marks)

c - Calculate < E > t=o

(6 marks)

d - Calculate the expectation value of parity

(7 marks)

فتراء صوبة

DATE:	16/01/2017	TERM: 1 ^{S)}	TOTAL MARKS:200	PERIOD: 2 H ^{US}		
	TITLE:		lar biophysics 1 v-Physics Students	CODE:BP3112		
	DEPARTMENT OF PHYSICS EXAMINER: PROF. DR. RFYAD A.M. GRAFY					
			TANTA UNIVERSITY FACULTY OF SCIENCES			

1- By using the Stokes- Einstein equation prove that the diffusion constant of a particular molecular species depends on the nature of the molecule and the solvent? And derive the relationship between the molar mass and the diffusion constant of a molecule?

2- Define the following:

a- Fick's law formulas; b- Flux of particles; c-Osmosis;
d- t Hoof's law; e- Plasmolysis; f-Reverse osmosis;
g- Molar conductance; and i- electrophoretic mobility?

- Explain physically the osmosis process between roots and ground water?
- 3- Estimate and explain the condition of the vessel's burst?
 - Explain the factors which contributing to the semipermeable nature of membranes showing how you can apply the Fick's law to the transport of molecules across a biomembrane?
- 4- Name the molecular models and explain how you can get on one kind of energy of a diatomic molecule?

		Tanta University- Faculty of Science-Department of Physics Examination for Senior (Third level) Students of Biophysics			
Course title		Biophysics of nervous system		course code:BP3154	
Date: 26/1/2	2017	term: 1st	Total assessment marks:	Time allowed: 2hours	

(Answer the following question)

First question (25 marks)

a- Discuss in brief the mechanisms of diseases and drugs in cells of nervous system? (10 marks)

b- A negative stimulus of -20pA was applied to a membrane at t = 1msec and produced the following trace. Note that hyperpolarizing pulses are always considered

Second question (25 marks)

- a- Describe with drawings the different mechanisms of neurons connections? (13 marks)
- b- Discuss in brief with drawings and mathematical relations multicompartment models for branches and soma of neurons? (12 marks)

Third question (25 marks)

- a- Describe in brief Traub model of the pyramidal neurons? (10 marks)
- **b-** Explain in details Hodgkin-Huxley model for modeling the potassium conductance? (15 marks)

Fourth question (25 marks)

- a- Prove that the equation of mathematical core conductor for the passive potential propagation in dendrites given by $\lambda^2 \frac{\delta^2 V_m}{\delta x^2} = \tau_m \frac{\delta V_m}{\delta t} + V_m$? (15 marks)
- a- Write short notes on the following: 1) neural imaging by optical technique and 2) Functional Magnetic Resonance Imaging? (10 marks)

Good luck......Dr. Reda Morsy

I SAN	TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS				
	EXAMINATION FOR JUNIORS (THIRD LEVEL) STUDENTS OF PHYSICS (SEMESTER 1)				
	COURSE TITLE:	دوائر كهربية ELECTRICAL CIRCUITS لطلاب المستوى الثالث (شعبة الفيزياء والفيزياء الحيويه)		COURSE CODE: PH3151	
DATE:2	JANUARY, 2016	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS	

Answer The Following:

First question:

{24 Marks}

(12Marks)

{28 Marks}

- a) Define the following:
 - 1) Kirchhoff's current law.
 - 2) Kirchhoff's voltage law.
 - 3) Norton's Theorem.
- b) Determine the magnitude and the correct direction of the unknown currents in the network of figure 1.

Fig. 1 (12 Marks)

Second question:

- a) For the network shown in figure 2 find:
 - 1) The total Resistance R_T.
 - 2) Calculate the voltage V_{ab}

 $R_{0}=100\Omega$ $R_{0}=50\Omega$ $R_{0}=800$ $R_{0}=180\Omega$ $R_{0}=180\Omega$

b) Find the current in each branch of the network in figure 3 using branch-current analysis.

over

Please turn

Ugelin + rtice

	TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF PHYSICS					
	E	EXAMINATION OF (THIRD YEAR) STUDENTS OF PHYSICS (CREDIT HOURS)				
	COURSE TITLE:		Atomic spectroscopy	COURSE CODE: PH3141		
DATE:	31\12\2016	TERM: FIRST	TOTAL ASSESSMENT MARKS:100	TIME ALLOWED: 2HOURS		

Question(1):-

a. Derive that the ratio between the major and minor axes is equal the ratio between the azimuth and principle quantum numbers. k/n = b/a (15Marks)

b. Find out the longest wavelength of Balmer series transitions of hydrogen atom, then find the end of the series.(m=9.035x10⁻²⁸g, e=4.77x10⁻¹⁰ e.s.u. h= 6.0547x10⁻²⁷erg sec) (5 Marks)

c. Compare between positron and positronium. (5 Marks)

Question(2):-

- a. Derive that the group velocity of the De Broglie waves is the same as that of the particle. (10 Marks)
- b. <u>Discuss in details about:-</u> (15Marks)
 Diffraction Grating Spectrograph- Wien's displacement Law
 Energy level diagram of hydrogen atom

Question(3):-

a. Derive the Rutherford scattering formula, where: (20 Marks)

$$N(\theta) = \frac{N_i ntz^2 e^4}{(8\pi\epsilon)^2 r^2 T^2 \sin^4(\theta/2)}$$

b. The wavelength of the photoelectric threshold of Tungsten is 230 nm. Determine the energy of the electrons ejected from the surface by ultraviolet light of wavelength 180 nm. (5Marks)

Question(4):-

- a. State the three Bohr's assumptions and write the equation of each one with the meaning of each symbol. (15 Marks)
- b. Discuss Compton experiment in details. (10 Marks)

EXAMINER	DR. Shrouk F.	Elashry
	⊚ أطيب	

فيزير المركبور

Tanta University- Faculty of science

Physics Department-Final Exam - January 2016-2017

BP3156 for 3rd year- Time: 2 h

Answer the following question:

(25 marks for each one)

1-If the position vector connecting the origin O to the point A on a body is given by $\vec{r} = (-2\cos 60 \, \text{e}^{2} - 2\sin 60 \, \text{e}^{2}) \, \text{m}$. Find the moment of the force $\vec{F} = (2 \, \text{e}^{2} + 20 \, \text{e}^{2}) \, \text{N}$ acting through the point A on the body.

- 2-(a) Prove that the linear momentum is conserved (i. e.),
 - $\sum_i \overline{F}_i \frac{dL}{dt} = 0$, where F_i an external force, L is the linear momentum.
- (b) Compute the moment generated by dumbbell weight 20 kg at the shoulder of an athlete whose arms 0.66m, and makes an angle 30°,45°,90° with vertical axis.
- 3- Determine the conditions of jumping considering a model of mass M representing the weight of the upper body is connected to two slender rods each of length L.
- 4-Prove that the angular acceleration for the swinging motion of a rod with uniformly distributed mass in a vertical plan is given by:

$$d^2\theta/dt^2 = -(3g/2L)\sin\theta$$

where θ is angle between slender rod and the vertical , dm is mass rod element , L is its length , g is acceleration of gravity.

فرناء سوں

Tanta University
FACULTY OFSCIENCE

PHYSICS

PHYSICS DEPARTMENT

Energy Physics Exam

Course Code PH3132

Date 1 | Jan 2017

Term: First

Course Title

Total Assessment Marks: 100 Time Allowed: 2 hours

Answer the following questions:

- 1.a. An 80 kg skydiver has a speed of (60 m/s) at an altitude of (800 m) above the ground. Determine his kinetic energy, potential energy and his total mechanical energy (g=10 m/s²). (8 Marks)
- b. Explain the thermodynamics laws. (8 Marks)
- c. Explain the importance of "Energy Conservation" and discuss its issues. (9 Marks)
- 2.a. Define the following:

Electrical energy, critical mass, binding energy, black body, and nuclear forces. (10Marks)

- b. Explain the "Energy Balance Equation". (5 Marks)
- c. Draw a schematic diagram to explain the wind mill function. (10 Marks)
- 3.a. Explain what is meant by "Global Warming" and greenhouse gases. (10 Marks)
- b. Draw a schematic diagram of the "Flat-Plate Solar collector" and describe its function. (10 Marks)
- c. Draw a diagram to explain how to make use of sensible heat storage of solar energy. (5 Marks)
- 4.a. Discuss the advantages of renewable energy resources (10 Marks)
- b. Explain the difference between fusion and fission nuclear reactions and how to generate useful energy out of them. (10 marks)
- c. Describe briefly how it is possible to generate energy out of hydropower. (5 Marks)

_	•	
		2222
		GOOD
		0000

LUCK